top of page

AAIB Report: fatal accident at King Power Stadium, Leicester

The Air Accidents Investigation Branch has published a formal report into the fatal accident involving a Leonardo AW169 (G-VSKP) helicopter which occurred at the King Power Stadium, Leicester on 27 October 2018

King Power stadium ©️ LM News


At 1937 hrs the helicopter, carrying the pilot and four passengers, lifted off from the centre spot of the pitch at the King Power Stadium. The helicopter moved forward and then began to climb out of the stadium on a rearward flightpath while maintaining a northerly heading and with an average rate of climb of between 600 and 700 ft/min. Passing through a height of approximately 250 ft, the pilot began the transition to forward flight by pitching the helicopter nosedown and the landing gear was retracted.

The helicopter was briefly established in a right turn before an increasing right yaw rapidly developed, despite the immediate application of corrective control inputs from the pilot.

The helicopter reached a radio altimeter height of approximately 430 ft before descending with a high rotation rate. At approximately 75 ft from the ground the collective was fully raised to cushion the touchdown.

The helicopter struck the ground on a stepped concrete surface, coming to rest on its left side. The impact, which likely exceeded the helicopter’s design requirements, damaged the lower fuselage and the helicopter’s fuel tanks which resulted in a significant fuel leak.

The fuel ignited shortly after the helicopter came to rest and an intense post-impact fire rapidly engulfed the fuselage. The pilot and four passengers were fatally injured in the accident.

Investigation findings

The investigation found the following causal factors for this accident:

  1. Seizure of the tail rotor duplex bearing initiated a sequence of failures in the tail rotor pitch control mechanism which culminated in the unrecoverable loss of control of the tail rotor blade pitch angle and the blades moving to their physical limit of travel.

  2. The unopposed main rotor torque couple and negative tail rotor blade pitch angle resulted in an increasing rate of rotation of the helicopter in yaw, which induced pitch and roll deviations and made effective control of the helicopter’s flightpath impossible.

  3. The tail rotor duplex bearing likely experienced a combination of dynamic axial and bending moment loads which generated internal contact pressures sufficient to result in lubrication breakdown and the balls sliding across the race surface. This caused premature, surface initiated rolling contact fatigue damage to accumulate until the bearing seized.

The investigation found the following contributory factors for this accident:

  1. The load survey flight test results were not shared by the helicopter manufacturer with the bearing manufacturer in order to validate the original analysis of the theoretical load spectrum and assess the continued suitability of the bearing for this application, nor were they required to be by the regulatory requirements and guidance.

  2. There were no design or test requirements in Certification Specification 29 which explicitly addressed rolling contact fatigue in bearings identified as critical parts; while the certification testing of the duplex bearing met the airworthiness authority’s acceptable means of compliance, it was not sufficiently representative of operational demands to identify the failure mode.

  3. The manufacturer of the helicopter did not implement a routine inspection requirement for critical part bearings removed from service to review their condition against original design and certification assumptions, nor were they required to by the regulatory requirements and guidance.

  4. Although the failure of the duplex bearing was classified as catastrophic in the certification failure analysis, the various failure sequences and possible risk reduction and mitigation measures within the wider tail rotor control system were not fully considered in the certification process; the regulatory guidance stated that this was not required.

Safety actions and recommendations

AAIB Special Bulletin S1/2023, published on 14 November 2018 and AAIB Special Bulletin S1/2023, published on 6 December 2018, provided initial information on the circumstances of this accident.

During the course of this investigation and as a result of the findings made, the helicopter manufacturer has issued sixteen Service Bulletins and EASA has published nine Airworthiness Directives for the continued airworthiness of the AW169 and AW189 helicopter types.

Eight Safety Recommendations have been made in this report. These have been made to EASA to address weaknesses or omissions identified in the regulations for the certification of large helicopters - Certification Specification 29.

The recommendations address the main findings of the investigation and include: validation of design data by suppliers post-test; premature rolling contact fatigue in bearings; life limits, load spectrum safety margin and inspection programmes for critical parts; and assessment and mitigation of catastrophic failure modes in systems.

Chief Inspector’s statementSaid Crispin Orr, Chief Inspector of Air Accidents: “This was a tragic accident in which five people sadly lost their lives. Our thoughts are with their loved ones, and everyone affected.“The AAIB has carried out an extensive investigation to establish why the accident happened and how safety can be improved.  This involved a multi-disciplinary team of skilled investigators from the AAIB, supported by a wide range of experts from industry, academia, and safety investigation authorities from around the world. “As a result, safety action has already been taken for the continued airworthiness of the AW169 and AW189 helicopter fleets. “Today we are publishing our final report which sets out eight recommendations to enhance safety in the longer term, regarding the design, validation and in-service monitoring of safety critical components on large helicopters.”



 Add this site to your Home Screen

bottom of page